Drehen durch Scheren

vorhergehende Artikel in: Java Komponenten Numerik
28.01.2023

Ich bin durch Stöbern in meiner sozialen Blase auf ein altes Verfahren aufmerksam geworden, das ich dennoch bisher nicht kannte (sollte mein alter Bildverarbeitungs-Professor sich jetzt zornroten Kopfes fragen, wieso er damals dann überhaupt vor uns gestanden hat, bitte ich inständig um Vergebung für meine Unaufmerksamkeit!)

Das Verfahren ersetzt die affine Transformation des Drehes einer Bitmap-Graphik (der beliebiger zweidimensionaler Koordinaten) durch drei Scherungs-Operationen. Dabei wird die Rotation um einen bestimmten Winkel durch eine Scherung in x-Richtung, eine in y-Richtung und am Ende noch eine die Wiederholung der ersten ersetzt.

Warum das so ist? Nun, die traditionelle Rotation um einen Winkel ist definiert durch die Rotationsmatrix:

Die drei Scherungsmatrizen lauten:

Multipliziert man diese drei Matrizen aus, erhält man die resultierende Matrix für die Transformation zweidimensionaler Koordinaten wie folgt:

Durch Gleichsetzung

und damit

erkennt man unmittelbar, dass

Durch Einsetzen ergibt sich

bzw:

Mit

ergibt sich schließlich

Und aus

und

kann man

ableiten und erhält damit für die drei Parameter der Scherung:

Damit wird auch ersichtlich, warum die dritte Scherung eine simple Wiederholung der ersten darstellt.

Ich habe hier drei Beispiele mit der guten alten Lena zum Vergleich abgebildet: Das erste Bild ist aus einer traditionellen Rotation kombiniert mit einer bikubischen Filterung entstanden:

Screenshot Lena gedreht mittels traditioneller Rotationsmatrix

Das zweite Bild zeigt das Ergebnis mit der Variante dreier aufeinanderfolgender Scherungen:

Screenshot Lena gedreht mittels dreier Scherungen ohne Filter

Und das letzte Bild schließlich demonstriert das Ergebnis mit einem etwas hemdsärmeligen Ansatz zur Filterung zur Vermeidung starker Treppenbildung (besonders ersichtlich im zweiten Bild ohne Filter am Hut):

Screenshot Lena gedreht mittels dreier Scherungen mit Maßnahmen zur Reduktion von Treppenartefakten

Man erkennt auch sehr gut, dass durch die dreimalige Anwendung einer Operation mehr Bildinhalte verloren gehen als bei der Rotation - Man muss daher bei der Entscheidung für oder gegen die Variante mit denm Scherungen auch abwägen, wie wichtig die Informationen an den Rändern und in den Ecken des Originals sind!

Der Algorithmus, so wie ich ihn implementiert habe benötigt immer noch während der Ausführung Gleitkommaarithmetik. Die Parameter für die Scherung lassen sich beim Start der Anwendung in Lookup-Tabellen vorberechnen und von dort aus benutzen. Es sollte möglich sein, die Scherung ebenfalls ohne Gleitkommaarithmetik durchführen zu können - dazu könnte man etwa für die Berechnung der einzelnen Offsets der jeweiligen Zeilen und Spalten den guten alten Bresenham-Linienalgorithmus zur Anwendung bringen.

Alle Artikel rss Wochenübersicht Monatsübersicht Codeberg Repositories Mastodon Über mich home xmpp


Vor 5 Jahren hier im Blog

  • Hardware für Netzwerk Degrader

    12.01.2021

    Vor ungefähr einem Jahr berichtete ich über den letzten Stand meines Projektes "Schlechtes Netz" - eines smarten Netzwerkkabels mit konfigurierbarer Übertragungsqualität.

    Weiterlesen

Neueste Artikel

  • Asymmetrische Kryptographie

    Ich habe mich mit der Idee schon länger getragen: Nochmal einen Rundumschlag zu asymmetrischer Kryptographie zu machen. Dabei werde ich mich auf Demonstrationen der einzelnen Konzepte und Operationen mit Beispielcode konzentrieren und zu jedem der vorgestellten Konzepte mehr oder weniger ausführlich bezüglich der Einsatzszenarien und Vor- und Nachteile Stellung beziehen

    Weiterlesen
  • LinkCollections 2025 XII

    Nach der letzten losen Zusammenstellung (für mich) interessanter Links aus den Tiefen des Internet von 2025 folgt hier gleich die nächste:

    Weiterlesen
  • Shamir Secret Sharing

    Wie bereits angekündigt werde ich in den nächsten Wochen einige Aspekte asymmetrischer Kryptographie beschreiben. Der vorliegende Artikel erläutert ein Konzept, das auch viele Anwendungsmöglichkeiten abseits asymmetrischer Kryptographie hat, allerdings auch zum Beispiel auf private Schlüssel angewendet werden kann... und demonstriert die Implementierung in Java.

    Weiterlesen

Manche nennen es Blog, manche Web-Seite - ich schreibe hier hin und wieder über meine Erlebnisse, Rückschläge und Erleuchtungen bei meinen Hobbies.

Wer daran teilhaben und eventuell sogar davon profitieren möchte, muss damit leben, daß ich hin und wieder kleine Ausflüge in Bereiche mache, die nichts mit IT, Administration oder Softwareentwicklung zu tun haben.

Ich wünsche allen Lesern viel Spaß und hin und wieder einen kleinen AHA!-Effekt...

PS: Meine öffentlichen Codeberg-Repositories findet man hier.